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An Algorithm for Computing Logarithms 
and Arctangents 

By B. C. Carlson 

Abstract. An iterative algorithm with fast convergence can be used to compute logarithms, 
inverse circular functions, or inverse hyperbolic functions according to the choice of initial 
conditions. Only rational operations and square roots are required. The method consists in 
adding an auxiliary recurrence relation to Borchardt's algorithm to speed the convergence. 

1. Introduction. Logarithms, inverse circular functions, and inverse hyperbolic 
functions are computed in practice by a variety of methods, including infinite series, 
continued fractions, Chebyshev approximations, and rational approximations [4]. 
A method known as Borchardt's algorithm [2, Eq. (2.3)], [3] employs very simple 
recurrence relations containing a square root but is seldom used, because the error 
is reduced by a factor of only four per cycle. Thus, lOD accuracy typically requires 
fifteen to twenty square roots. A related algorithm, due to Thacher [6], has a factor 
of sixteen per cycle but loses some significant figures through cancellation. 

In the present paper, we introduce an auxiliary recurrence relation to speed the 
convergence of Borchardt's algorithm so that only three or four square roots are 
required for 1OD accuracy. (We assume here that the range of the independent 
variable has been reduced by familiar devices such as arctan(l/x) = 7r/2 - arctan x. 
More cycles are required outside the reduced range.) The method amounts to repeated 
application of a well-known technique [5, pp. 86-87] for improving convergence 
by extrapolation. The recurrence relations are the same for all the functions con- 
sidered, there are no constants to be stored, and no serious cancellation occurs. 
The precision is limited only by the number of cycles performed, and the rate of 
convergence gradually accelerates. Although still not as fast as some other methods 
because of the square roots, the algorithm might well be preferable when economy 
of storage space is important. It might be useful also in verifying the accuracy of 
faster algorithms. The method is being extended to computation of elliptic integrals, 
but only elementary functions are discussed in the present paper. 

2. Statement of the Algorithm. The same recurrence relations will be used 
for computing a logarithm, an inverse circular function, or an inverse hyperbolic 
function, but the initial values and the final step will depend on which function is 
being computed. For definiteness, we state first the complete algorithms for com- 
puting natural logarithms and arctangents and later give the changes necessary for 
computing other functions. 
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Algorithm for logarithms. If x > 0, compute 

(2.1) ao= (l+x), go=xl/2 

(2.2) a,+, = 2(a. + ga), gn+1 = (a.+ 1g) 
2 n = 0, 1, 2, * 

(2.3) d(O, n) = a., n = , 1, 2, , 

d(k - 1, n)-2 -2k d(k- 1, n - 1) 
(2.4) d(k, n) 1 - 2-2k , k =1, 2, n i. 

Then, 

(2.5) logx 
x 

I(+ 
I 

E 
d(n, n) 

where the fractional error en is given approximately by 

(2.6) 2-n-3n-l log X) 

Algorithm for arctangents. If x is real, let 

(2.7) aO = 1, go = (1 + X2)1/2, 

and compute d(n, n) according to (2.2), (2.3), and (2.4). Then, 

(2.8) arctan x = x (1 + C), d(n, n) 

where the fractional error is given approximately by 

(2.* 9) ,-~ (-1 r + 1)fl2-n + 1 (arctan x)2n+2 

To save computation time, the denominator of (2.4) may be deleted if the right- 
hand sides of (2.5) and (2.8) are multiplied by (1- 1/4)(1 - 1/16)(1 -1/64) * 
(1-2 -2n). Then, (2.4) requires only a shift in binary arithmetic and a subtraction. 
To show that the subtraction never leads to loss of significant figures, we observe 
first that for k = 1 the numerator of (2.4) is a, - Ian-. By (2.2), the first term is 
more than twice the second, and hence, serious cancellation cannot occur. As k 
increases, the amount of cancellation decreases, for it is easy to show by induction 
that the ratio of the first to the second term in the numerator of (2.4) exceeds 2k. 

In some circumstances, one might also save computation time by taking gn as 
a first approximation to gn+jl when extracting the square root in (2.2) by the iterative 
method [4, pp. 90-91]. 

The functions arcsin x and arccos x can be computed directly by starting from 
the initial values ao and g0 shown in Table I and ending the algorithm according 
to the last column of the table. The inverse hyperbolic functions, which are expres- 
sible in terms of logarithms, can be computed in the same way. We have simplified 
the initial values by using the fact that d(n, n) is homogeneous of first degree in 
ao and go. In the case of the inverse circular functions, the approximate error is 
given by (2.9), with arctan x replaced by the function f(x) in the first column of the 
table. For the inverse hyperbolic functions, it is given by (2.6), with log x replaced 
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by 2f(x), the factor 2 coming from the left side of 

(2.10) 2 arctanh x = log (1 + x)/(1 - x). 

TABLE I. Initial and final data for computing inverse circular and inverse hyper- 
bolic functions. The first two rows correspond to (2.1), (2.5), (2.7), and (2.8). Although 
arecos x can be computed if -1 < x < 0, loss of significant figures occurs near -1. 

f(x) Range of x a. go f(x)d(n,n) 
1+En 

log x x > 0 (1 + x) x1'2 x-1 
arctanx co<x< <X 1 (1+x2)1"2 x 

arcsin x -1 ? x ? 1 (1 _ X2)1/2 1 x 
arccos x 0 ?x? 1 x 1x2)12 

arctanh x -1 < x < 1 1 (1 - x2)1/2 x 

arcsinh x - < x < (1 + x2)12 1 x 
arccosh x x? 1 x 1 (x2- 1)1X 

3. Numerical Examples. If y > 0, we can find an integer m such that y = 2mx, 
where x lies in the reduced range 2-1/2 < x < 21/2. Since log y = log x + m log 2, 
it suffices to compute logarithms in the reduced range, and the worst case is x = 21/2 

because the rate of convergence improves as ilog xi decreases, according to (2.6). 
Therefore, we take as an example the computation of log x for x = 1.41421 35623 731 
and list the values of gn, an = d(O, n), and d(k, n), all rounded to lOD: 

n 9. a, d(l, n) d(2, n) 

0 1.18920 71150 1.20710 67812 

1 1.19367 36437 1.19815 69481 1.19517 36704 

2 1.19479 39440 1.19591 52959 1.19516 80785 1.19516 77057 

3 1.19535 46200 1.19516 77280 1.19516 77046 

d(3, 3) = 1.19516 77046 

log 1x 0412 362 = 0.34657 35903 
d(3, 3) 1.19516 77046 

This result is the correct value of 2 log 2 to IOD. Because g3 is not needed to 
find d(3, 3), only three square roots were extracted. Although gn, an, and d(n, n) 
approach the same limit, a3 and d(3, 3) agree to only 3D. Since Borchardt's algorithm 
would use a, in place of d(3, 3), the auxiliary relation (2.4) produces a dramatic 
improvement in accuracy without additional square roots. 

The fractional error E, coinputed from (2.5) can be compared with the estimate 
(2.6). For n = 0, the actual value is E0 = 0.010 and the estimate is 0.006. For n > 0, 
the actual errors are E1 = 5 X lO-, E2 = 9 X I0- 1, E3 = 4 X 10-14, and the estimates 
agree to one significant figure. These errors show the gradual acceleration of con- 
vergence expected from the exponent - n2 in (2.6). 
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Outside the reduced range, the fractional errors are larger and the estimates 
are less accurate. For example, if x = 1024, some actual errors are 6- = 2.5, 62 = 0.02, 
e = 2 X 108, o6 = 6 X I0-', and, for n > 0, the estimated errors are approximately 
three times the actual errors. 

In computing arctangents, the relation arctan(l/x) = ir/2 - arctan x makes 
it sufficient to consider the reduced range -1 < x < 1. We take as an example the 
worst case, x = 1: 

gn a, d(l1 n) d(2, n) 

0 1.41421 35624 1.00000 00000 

1 1.30656 29649 1.20710 67812 1.27614 23749 

2 1.28145 77239 1.25683 48730 1.27341 09036 1.27322 88056 

3 1.27528 71547 1.26914 62985 1.27325 01069 1.27323 93871 

4 1.27221 67266 1.27324 02026 1.27323 95423 

n d(3, n) d(4, n) 

3 1.27323 95551 

4 1.27323 95448 1.27323 95447 

arctan x = x 1.759 13 
d(4, 4) = 1.27323 95447 

This result is the correct value of 7r/4 to IOD. Only four square roots were ex- 
tracted. Since a4 agrees with d(4, 4) to only 2D, the auxiliary relation (2.4) has supplied 
eight additional decimal places. 

The actual fractional errors calculated from (2.8) are Eo = -0.2, L. = 0.002, 
62 = -8 X 10-6, 63 = 8 X I0-, 64 = -2 X 10-12, and the errors estimated by 
(2.9) agree to within one unit in the first significant figure. The gradual acceleration 
of convergence expected from (2.9) is again discernible. 

4. Proof of the Algorithm. The solution of the recurrence relations (2.2) with 
initial conditions (2.1) is easily verified to be 

(4.1) an = 2n '(x - 1) coth(2-'f' log x), g,, = 2-"-1(x - 1) csch(2-"'- logx), 

from which it follows that 

(4.2) lim an = lim gn = (x - )/(log x) 

as n -o. The solution with initial conditions (2.7) is 

(4.3) an = 2-nx cot(2-' arctan x), gn = 2-'x csc(2 n arctan x), 

which implies 

(4.4) lim an = lim gn = x/(arctan x). 

Both solutions can be deduced directly from the usual form of Borchardt's algorithm 
[2]. 
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Consider (4.1) and define for x > 0 and t > 0, 

(4.5) L = (x - 1)/(log x), r1/2 - 1 log x, f(t) = Lt112 coth t1/2, 

with f(O) = L. If 0 = , then 

(4.6) a,, = f(0 r). 

Assume for the moment that rIn < 23 so that r112 coth r112 can be represented by 
a power series in r. Then, 

ao = f(r) cO + clr + c2rT + C3rT + 

(4.7) a, = f(or) CO + c0? C1 + 02C2r2 + 03C3r3 + ... 

a2 = J(0 r) = c r + 02C1T + 0'C2r2 + 06c3rr + ... 

and so on, where c,, depends on the Bernoulli number B2n: 

(4.8) cn = L22nB2n/(2n)!. 

The problem is to estimate co = f(O) = lim an, knowing the values of a finite number 
of the an. We can eliminate the terms linear in r by forming 

_ co - c (1+ ) - . C 

(4.9) 
a2 - 'a I - 03C2r2 04(l + 0)C3,r -3 

and so on. The left side of the last equation gives an improved estimate of co. If 
the first equation of (4.9) is multiplied by 02 and subtracted from the second, the 
terms in r2 are removed, and the procedure can be continued to any order in T. 

The same result, an extrapolation from ao, al, , an to lim an, is achieved by the 
following lemma, which does not require convergence of the power series. 

LEMMA 1. Let f(t) and its first n + 1 derivatives be defined and continuous on 
the interval 0 ? t < r. Let 0 be a fixed number, 0 < 0 < 1, and suppose that f(0mr) 
is known for m = 0, 1, ... , n, and f(O) is to be estimated. Define 

(4.10) d(O, m) = f(Omr), m= 0, 1,... n, 

d(k - 1 , rn) - k d(k - 1, rn -I1 

(4.11) d(k, m) = 1 k k 41, 2, 
. i. 

Then, 

(4.12) t(0) = d(n, n) + n(n+)2 (r) f(n+)(X) 

(n +1) 
where 0 < x,, < r. 

Proof. Let tm = Omr and define divided differences 

f[O, t] = I() -f(tm) 

(4.13) 0 m 

f[0, tm, tm-1 * tmnkb = f [0, tm, tm-1, 
I 

tm-kl] 
f [0, tm-1, tm-2, t,t- 

t ? n - A;~ 
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The solution of the recurrence relations (4.11) with initial conditions (4.10) is easily 
verified to be 

(4.14) d(k, mn) f(0) + (1)ktmtm-i . . t-kff[0, tmi m tm-k]. 

Solving for f(o), we find 

f(O) = d(k, m) + ON(-r)k+lf [0, tin, tm-_ .. ** tm-k] 

(4.15) k+1 

= d(k, m) + 0 N 
(Xkm)( (k + 1)I (+l(k 

where 0 <X k^ < 0mkr and 

i in-k 

The case k = m = n is (4.12). 
To apply Lemma 1 to the computation of logarithms, we choose f as in (4.5) 

and 0 = I, so that d(0, m) = am = f(0mr). Then, (4.12) becomes 

(4.17) L = d(n, n)- Le., 

where 

(4.18) Lef = (-1)2-n(n+l)(bog X)2n+ f 
(1 

(Xn) 

To estimate 6n, we replace xn by 0 and note that 

(4.19) = = (n+1)(0) L22n+2B2n+2 1)n2L (4.19) tn + 1)! = Cn+1 
= 

(2n + 2)! 2n+2 

where the last approximation follows from [1, Eq. (23.1.15)]. Thus, 

(4 .20) E?12-n--n+l 
1log x)2+ 

in agreement with (2.6), while (4.17) and (4.5) imply (2.5). 
The analysis for arctangents is similar, except that (4.5) is replaced by 

(4.21) L = x/(arctan x), 'r1/2 = arctan x, f(t) = Lt1/2 cot t112 

and the right side of (4.8) is multiplied by (-1)l. 
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